

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

MG Chemicals (Head Office)

Version No: 1.1

Safety Data Sheet (Conforms to Regulations (EC) No 2015/830)

Chemwatch Hazard Alert Code: 3

Issue Date: 23/10/2015 Print Date: 23/10/2015 Initial Date: 22/10/2015 L.REACH.GBR.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

1.1.Product Identifier

Product name	843ER-Part B Silver Coated Copper Epoxy Conductive Coating
Synonyms	SDS Code: 843ER-Part B; Related Numbers 843ER-800ML, 843ER-3.25L
Out	
Other means of identification	Not Available

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Electrically conductive epoxy coating hardener for use with resins		
Uses advised against	Not Applicable		

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals (Head Office)	MG Chemicals UK Limited	
Address	9347-193 Street, Surrey V4N 4E7 British Columbia Canada	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	
Telephone	+1-604-888-3084	+44 1663 362888	
Fax	+1-604-888-7754	Not Available	
Website	www.mgchemicals.com	Not Available	
Email	info@mgchemicals.com	sales@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Not Available	CHEMTREC
Emergency telephone numbers	Not Available	+(44)-870-8200418
Other emergency telephone numbers	Not Available	+(1) 703-527-3887

SECTION 2 HAZARDS IDENTIFICATION

2.1.Classification of the substance or mixture

Classification according to
regulation (EC) No
1272/2008 [CLP] ^[1]

Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Serious Eye Damage Category 1, STOT - SE (Narcosis) Category 3, Chronic Aquatic Hazard Category 2, Flammable Liquid Category 2

Legend:

1. Classified by Chemwatch; 2. Classification drawn from EC Directive 67/548/EEC - Annex I; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

2.2. Label elements

CLP label elements

SIGNAL WORD

DANGER

Hazard statement(s)

H315

Causes skin irritation

Version No: **1.1** Page **2** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

H317 May cause an allergic skin reaction
H318 Causes serious eye damage
H336 May cause drowsiness or dizziness
H411 Toxic to aquatic life with long lasting effects
H225 Highly flammable liquid and vapour

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P210	Geep away from heat/sparks/open flames/hot surfaces. No smoking.				
P271	Use only outdoors or in a well-ventilated area.				
P280	ear protective gloves/protective clothing/eye protection/face protection.				
P240	Ground/bond container and receiving equipment.				
P241	Use explosion-proof electrical/ventilating/lighting//equipment.				
P242	Use only non-sparking tools.				
P243	Take precautionary measures against static discharge.				
P261	Avoid breathing dust/fume/gas/mist/vapours/spray.				
P273	Avoid release to the environment.				
P272	Contaminated work clothing should not be allowed out of the workplace.				

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.					
P310	nediately call a POISON CENTER/doctor/					
P370+P378	of fire: Use alcohol resistant foam or normal protein foam for extinction.					
P302+P352	SKIN: Wash with plenty of water/					
P333+P313	kin irritation or rash occurs: Get medical advice/attention.					
P362+P364	Take off contaminated clothing and wash it before reuse.					
P391	Collect spillage.					
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.					
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.					

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.			
P405	tore locked up.			
P403+P233	Store in a well-ventilated place. Keep container tightly closed.			

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

2.3. Other hazards

Cumulative effects may result following exposure*.

Ingestion may produce health damage*.

May produce skin discomfort*.

Possible respiratory sensitizer*.

REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP]	
1.78-93-3 2.201-159-0 3.606-002-00-3 4.01-2119457290-43-XXXX, 01-2119943742-35-XXXX	55	methyl ethyl ketone	Flammable Liquid Category 2, Eye Irritation Category 2, STOT - SE (Narcosis) Category 3; H225, H319, H336, EUH066 ^[3]	

Print Date: 23/10/2015

Version No: **1.1** Page **3** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

1.68410-23-1 2.Not Available 3.Not Available	33	C18 fatty acid dimers/ polyethylenepolyamine polyamides	Not Applicable
4.Not Available			
1.67-63-0 2.200-661-7 3.603-117-00-0 4.01-2119457558-25-XXXX	5	<u>isopropanol</u>	Flammable Liquid Category 2, Eye Irritation Category 2, STOT - SE (Narcosis) Category 3; H225, H319, H336 [3]
1.71-36-3 2.200-751-6 3.603-004-00-6 4.01-2119484630-38-XXXX	4	n-butanol	Flammable Liquid Category 3, Acute Toxicity (Oral) Category 4, STOT - SE (Resp. Irr.) Category 3, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, STOT - SE (Narcosis) Category 3; H226, H302, H335, H315, H318, H336 [3]
1.112-24-3 2.203-950-6 3.612-059-00-5 4.Not Available	3	triethylenetetramine	Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1B, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3; H312, H314, H317, H412 [3]
Legend:	1. Classified by Chemwatch; 2. Classification drawn from EC Directive 67/548/EEC - Annex I; 3. Classification drawn from EC Directive 1272/2008 - Annex		

VI 4. Classification drawn from C&L

SECTION 4 FIRST AID MEASURES

4.1. Description of first aid	d measures
General	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water.
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.

Print Date: 23/10/2015

Version No: **1.1** Page **4** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- ▶ To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- ▶ Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

► Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary for seizures
- ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- ▶ If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.

- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- ▶ Haemodialysis might be considered in patients with severe intoxication
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above.

Symptomatic and supportive therapy is advised in managing patients.

SECTION 5 FIREFIGHTING MEASURES

5.1. Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- ▶ Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

► Alert Fire Brigade and tell them location and nature of hazard.

May be violently or explosively reactive.

Wear breathing apparatus plus protective gloves in the event of a fire.

▶ Prevent, by any means available, spillage from entering drains or water course.

Consider evacuation (or protect in place).

Fight fire from a safe distance, with adequate cover.

If safe, switch off electrical equipment until vapour fire hazard removed.

▶ Use water delivered as a fine spray to control the fire and cool adjacent area.

► Avoid spraying water onto liquid pools.

► **Do not** approach containers suspected to be hot

▶ Cool fire exposed containers with water spray from a protected location.

▶ If safe to do so, remove containers from path of fire.

► Sev

Fire Fighting

- Liquid and vapour are highly flammable.
 Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition.
 Heating may cause expansion or decomposition leading to violent rupture of containers.
- ► On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include; carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material **Contains low boiling substance**: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

Fire/Explosion Hazard

Version No: 1.1 Page 5 of 21 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

► Remove all ignition sources.

- ▶ Clean up all spills immediately.
- $\,\blacktriangleright\,$ Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- ▶ Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Collect residues in a flammable waste container.

Chemical Class: alcohols and glycols

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pichfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
polypropylene - particulate	2	blower	skiploader	W, SS, DGC
sorbent clay - particulate	2	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	3	throw	skiploader	DGC, RT
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC
polyurethane - mat	4	throw	skiploader	DGC, RT

Legend

Major Spills

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Chemical Class: bases

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R,W,SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
foamed glass - pillow	2	throw	pitchfork	R, P, DGC, RT
expanded minerals - particulate	3	shovel	shovel	R, I, W, P, DGC
foamed glass - particulate	4	shovel	shovel	R, W, P, DGC,

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R,W, SS
sorbent clay - particulate	2	blower	skiploader	R, I, P
expanded mineral - particulate	3	blower	skiploader	R, I,W, P, DGC
cross-linked polymer - pillow	3	throw	skiploader	R, DGC, RT
foamed glass - particulate	4	blower	skiploader	R, W, P, DGC
foamed glass - pillow	4	throw	skiploader	R, P, DGC., RT

Legend DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Print Date: 23/10/2015

Version No: 1.1 Page 6 of 21 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control:

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

7.1. Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- ► Check for bulging containers.
- ▶ Vent periodically
- ▶ Always release caps or seals slowly to ensure slow dissipation of vapours
- ▶ DO NOT USE brass or copper containers / stirrer
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- ▶ Avoid all personal contact, including inhalation
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- Safe handling
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
 - Avoid smoking, naked lights, heat or ignition sources. ▶ When handling, **DO NOT** eat, drink or smol
 - Vapour may ignite on pumping or pouring due to static electricity.
 - ► DO NOT use plastic buckets

 - Earth and secure metal containers when dispensing or pouring product.
 - ▶ Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 - ▶ Keep containers securely sealed.
 - Avoid physical damage to containers. Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - ▶ Use good occupational work practice
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Fire and explosion protection

See section 5

Other information

- ▶ Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- **DO NOT** store in pits, depressions, basements or areas where vapours may be trapped
- Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 - Protect containers against physical damage and check regularly for leaks ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

DO NOT use aluminium, galvanised or tin-plated containers

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

Suitable container

- ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic

Version No: **1.1** Page **7** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

Methyl ethyl ketone:

- reacts violently with strong oxidisers, aldehydes, nitric acid, perchloric acid, potassium tert-butoxide, oleum
- ▶ is incompatible with inorganic acids, aliphatic amines, ammonia, caustics, isocyanates, pyridines, chlorosulfonic aid
- ▶ forms unstable peroxides in storage, or on contact with propanol or hydrogen peroxide
- attacks some plastics
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation

Ketones in this group:

- are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
- react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.
- are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides.
- react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HClO4 (perchloric acid).
- ► may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives.

A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion. This property allows ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH).

- Alcohols
- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment
- ▶ Avoid contact with copper, aluminium and their alloys.

7.3. Specific end use(s)

Storage incompatibility

See section 1.2

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1. Control parameters

DERIVED NO EFFECT LEVEL (DNEL)

Not Available

PREDICTED NO EFFECT LEVEL (PNEC)

Not Available

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs)	methyl ethyl ketone	Butan-2-one (methyl ethyl ketone)	600 mg/m3 / 200 ppm	899 mg/m3 / 300 ppm	Not Available	Sk, BMGV
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (English)	methyl ethyl ketone	Butanone	600 mg/m3 / 200 ppm	900 mg/m3 / 300 ppm	Not Available	Not Available
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	methyl ethyl ketone	Butanone	600 mg/m3 / 200 ppm	900 mg/m3 / 300 ppm	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	isopropanol	Propan-2-ol	999 mg/m3 / 400 ppm	1250 mg/m3 / 500 ppm	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	n-butanol	Butan-1-ol	Not Available	154 mg/m3 / 50 ppm	Not Available	Sk

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
methyl ethyl ketone	Butanone, 2-; (Methyl ethyl ketone; MEK)	Not Available	Not Available	Not Available
C18 fatty acid dimers/ polyethylenepolyamine polyamides	C-18 Unsaturated fatty acid, dimers, reaction products with polyethylenepolyamines; (Versamid 140 polyamide resin; Versamid 125)	30 mg/m3	330 mg/m3	2000 mg/m3
isopropanol	Isopropyl alcohol	400 ppm	400 ppm	12000 ppm
n-butanol	Butyl alcohol, n-; (n-Butanol)	20 ppm	50 ppm	8000 ppm
triethylenetetramine	Triethylenetetramine	3 ppm	5.7 ppm	83 ppm

Ingredient	Original IDLH	Revised IDLH
methyl ethyl ketone	3,000 ppm	3,000 [Unch] ppm
C18 fatty acid dimers/ polyethylenepolyamine polyamides	Not Available	Not Available
isopropanol	12,000 ppm	2,000 [LEL] ppm
n-butanol	8,000 ppm	1,400 [LEL] ppm
triethylenetetramine	Not Available	Not Available

Version No: 1.1 Page 8 of 21 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

MATERIAL DATA

Polyamide hardeners have much reduced volatility, toxicity and are much less irritating to the skin and eyes than amine hardeners. However commercial polyamides may contain a percentage of residual unreacted amine and all unnecessary contact should be avoided.

For methyl ethyl ketone:

Odour Threshold Value: Variously reported as 2 ppm and 4.8 ppm

Odour threshold: 2 ppm (detection); 5 ppm (recognition) 25 ppm (easy recognition); 300 ppm IRRITATING

Exposures at or below the recommended TLV-TWA are thought to prevent injurious systemic effects and to minimise objections to odour and irritation. Where synergism or potentiation may occur stringent control of the primary toxin (e.g. n-hexane or methyl butyl ketone) is desirable and additional consideration should be given to lowering MEK exposures.

Odour Safety Factor(OSF)

OSF=28 (METHYL ETHYL KETONE)

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

For n-butanol:

Odour Threshold Value: 0.12-3.4 ppm (detection), 1.0-3.5 ppm (recognition)

NOTE: Detector tubes for n-butanol, measuring in excess of 5 ppm are commercially available.

Exposure at or below the TLV-TWA is thought to provide protection against hearing loss due to vestibular and auditory nerve damage in younger workers and to protect against the significant risk of headache and irritation.

25 ppm may produce mild irritation of the respiratory tract 50 ppm may produce headache and vertigo.

Higher concentrations may produce marked irritation, sore throat, coughing, nausea, shortness of breath, pulmonary injury and central nervous system depression characterised by headache, dizziness, dullness and drowsiness.

6000 ppm may produce giddiness, prostration, narcosis, ataxia, and death.

Odour Safety Factor (OSF)

OSF=60 (n-BUTANOL)

8.2. Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

8.2.1. Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

- Safety glasses with side shields
- Chemical goggles

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Version No: **1.1** Page **9** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- ▶ Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ When handling liquid-grade epoxy resins wear chemically protective gloves (e.g nitrile or nitrile-butatoluene rubber), boots and aprons.
- DO NOT use cotton or leather (which absorb and concentrate the resin), polyvinyl chloride, rubber or polyethylene gloves (which absorb the resin).
- ▶ DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.

Body protection

Hands/feet protection

See Other protection below

Overalls

- ► PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- ▶ Ensure there is ready access to a safety shower.

Other protection

Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.

For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).

Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Material	СРІ
PE/EVAL/PE	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PVA	С
PVC	С
SARANEX-23	С
TEFLON	С
VITON	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	Air-line*	AK-2 P2	AK-PAPR-2 P2 ^
up to 20 x ES	-	AK-3 P2	-
20+ x ES	-	Air-line**	-

- * Continuous-flow; ** Continuous-flow or positive pressure demand
- ^ Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

 Version No: 1.1
 Page 10 of 21
 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

Appearance	Clear, amber		
Physical state	Liquid	Relative density (Water = 1)	0.87
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	343
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	11.00
Initial boiling point and boiling range (°C)	80	Molecular weight (g/mol)	Not Available
Flash point (°C)	-3	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.8	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	0.082	Gas group	Not Available
Solubility in water (g/L)	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>2.1	VOC g/L	Not Available

9.2. Other information

Not Available

SECTION 10 STABILITY AND REACTIVITY

10.1.Reactivity	See section 7.2
10.2.Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 TOXICOLOGICAL INFORMATION

11.1. Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are

headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical

Version No: **1.1** Page **11** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose, and throat. Other effects reported from acute inhalation exposure in humans include central nervous system depression, headache, and nausea.

Easy odour recognition and irritant properties of methyl ethyl ketone means that high vapour levels are readily detected and should be avoided by application of control measures; however odour fatigue may occur with loss of warning of exposure.

The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.

Exposure to ketone vapours may produce nose, throat and mucous membrane irritation. High concentrations of vapour may produce central nervous system depression characterised by headache, vertigo, loss of coordination, narcosis and cardiorespiratory failure. Some ketones produce neurological disorders (polyneuropathy) characterised by bilateral symmetrical paresthesia and muscle weakness primarily in the legs and arms.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Accidental ingestion of the material may be damaging to the health of the individual.

Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased.

Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality

Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema.

Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent.

Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred. Following ingestion, a single exposure to isopropyl alcohol produced lethargy and non-specific effects such as weight loss and irritation. Ingestion of near-lethal doses of isopropanol produces histopathological changes of the stomach, lungs and kidneys, incoordination, lethargy, gastrointestinal tract irritation, and inactivity or anaesthesia.

Swallowing 10 ml. of isopropanol may cause serious injury; 100 ml. may be fatal if not promptly treated. The adult single lethal doses is approximately 250 ml. The toxicity of isopropanol is twice that of ethanol and the symptoms of intoxication appear to be similar except for the absence of an initial euphoric effect; qastritis and vomiting are more prominent. Ingestion may cause nausea, vomiting, and diarrhoea.

There is evidence that a slight tolerance to isopropanol may be acquired.

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either:

- ▶ produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

511 ipa

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant

ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

The vapour when concentrated has pronounced eye irritation effects and this gives some warning of high vapour concentrations. If eye irritation occurs seek to reduce exposure with available control measures, or evacuate area.

Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible comeal burns and eye damage. Eye contact may cause tearing or blurring of vision.

of producing a positive response in experimental animals.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or

Skin Contact

Ingestion

Eye

Chronic

Version No: **1.1** Page **12** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Secondary amines may react in the acid conditions of the stomach with oxidants or preservatives) to form potentially carcinogenic N-nitrosamines. The formation of nitrosamines from such amines has not only been observed in animals models but, at least for certain compounds, in the workplace. The amine-containing substances and end products handled at work can themselves be contaminated to a degree with corresponding nitrosamines. Under conditions encountered in practice nitrosation is to be expected with secondary amines and to a limited extent with primary and tertiary amines. Nitrogen oxides are the most probable nitrosating agents. Nitrosyl chloride, nitrite esters, metal nitrites and nitroso compounds may also be involved. Several factors such as pH, temperature, catalysts and inhibitors influence the extent of nitrosation. Two precautionary measures are therefore necessary when handling amines at the workplace.

- Simultaneous exposure to nitrosating agents should be reduced to minimum. This can be out into practice by eliminating nitrosating agents or, if they play a role in the actual process, replacing them with substances that do not lead to the formation of carcinogenic nitrosamines. In particular the level of nitrogen oxides at the workplace should be monitored and reduced when necessary.
- ▶ The levels of nitrosamines in the workplace and in substances containing amines should be monitored.

Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report No. 31, DFG, 1995

In animal experiments the oesophagus is shown to be the most important target organ for nitrosamines, independent of the route of application. The mechanism of this organotrophy cannot be explained sufficiently. The high oesophageal epithelium metabolic activation of nitrosamines, together with a comparatively low DNA repair, probably plays the most important role. In addition chronic stress factors, which lead to high stimulation of epithelial tumover, are a pacemaker for malignant progression. In some countries, the traditional consumption of extremely hot drinks leads to constant burns of the oesophagus, which increases the risk. Mate, a non-alcoholic brew, frequently consumed as tea in Uruguay, appears to be a high risk factor for oesophageal cancer

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain.

Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals

There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol.

Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil". An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are

headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

843ER-Part B Silver Coated
Copper Epoxy Conductive
Coating

TOXICITY	IRRITATION
Not Available	Not Available

methyl ethyl ketone

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >8100 mg/kg ^[1]	- mild
Inhalation (rat) LC50: 23.5 mg/L/8H ^[2]	Eye (human): 350 ppm -irritant
Inhalation (rat) LC50: 50.1 mg/L/8 hr ^[2]	Eye (rabbit): 80 mg - irritant
Oral (rat) LD50: 3474.9 mg/kg ^[1]	Skin (rabbit): 402 mg/24 hr - mild
	Skin (rabbit):13.78mg/24 hr open

C18 fatty acid dimers/ polyethylenepolyamine polyamides

TOXICITY	IRRITATION
dermal (rat) LD50: >5000 mg/kg*d ^[2]	Not Available
Oral (rabbit) LD50: 800 mg/kg**[²]	

isopropanol

TOXICITY	IRRITATION
Dermal (rabbit) LD50: 12792 mg/kg ^[1]	Eye (rabbit): 10 mg - moderate
Inhalation (rat) LC50: 72.6 mg/L/4h ^[2]	Eye (rabbit): 100 mg - SEVERE
Oral (rat) LD50: 5000 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate
	Skin (rabbit): 500 mg - mild

n-butanol

TOXICITY	IRRITATION
Dermal (rabbit) LD50: 3434.4 mg/kg ^[1]	Eye (human): 50 ppm - irritant
Inhalation (rat) LC50: 24 mg/L/4H ^[2]	Eye (rabbit): 1.6 mg-SEVERE
Inhalation (rat) LC50: 8000 ppm/4hE ^[2]	Eye (rabbit): 24 mg/24h-SEVERE

 Version No: 1.1
 Page 13 of 21
 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

	Oral (rat) LD50: 2292.3 mg/kg ^[1]	Skin (rabbit): 405 mg/24h-moderate
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 805 mg/kgE ^[2]	Eye (rabbit):20 mg/24 h - moderate
triethylenetetramine	Oral (rat) LD50: 2500 mg/kgE ^[2]	Eye (rabbit); 49 mg - SEVERE
		Skin (rabbit): 490 mg open SEVERE
		Skin (rabbit): 5 mg/24 SEVERE
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* extracted from RTECS - Register of Toxic Effect of chemical Substances	Value obtained from manufacturer's SDS. Unless otherwise specified data
	The following information refers to contact allergens as a group and may not be	e specific to this product.

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an

No significant acute toxicological data identified in literature search.

allergic test reaction in more than 1% of the persons tested.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities.

Combinations with chloroform also show increase in toxicity

METHYL ETHYL KETONE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities.

Combinations with chloroform also show increase in toxicity

No significant acute toxicological data identified in literature search.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

C18 FATTY ACID DIMERS/ POLYETHYLENEPOLYAMINE POLYAMIDES

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For isopropanol (IPA):

Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat.

Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred.

Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney.

Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of

ISOPROPANOL

Print Date: 23/10/2015

Version No: **1.1** Page **14** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful.

Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity

Genotoxicity: All genotoxicity assays reported for isopropanol have been negative

Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for n-butanol

N-BUTANOL

Acute toxicity: n-Butanol (BA) was only slightly toxic to experimental animals following acute oral, dermal, or inhalation exposure. The acute oral LD50 values for female rats ranged from 790 to 4360 mg/kg. Different strains of rat were used in each of four studies, which may account for the variability. Oral LD50 values for mice, rabbits, hamsters, dogs, and male rats all fell within the same range. The rat inhalation LC0 of 8000 ppm (24000 mg/m3) indicates very low inhalation toxicity (no lethality at 8000 ppm). The rabbit dermal LD50 was 3402 mg/kg, indicating that BA can penetrate the skin, but not very readily. Animal experiments and human experience indicate that BA is, at most, moderately irritating to the skin, but it is a severe eye irritant. These effects are most likely due to BAs localised defatting and drying characteristics. Although no animal data are available, human studies and experience show that BA is not likely to be a skin sensitiser.

The median odor threshold for BA (0.17 ppm) is well below the lowest nasal irritation threshold in humans (289 ppm), allowing warning of possible chemical exposure prior to nasal irritation occurring. Human studies are complicated by the odor characteristics of the material, as the odor threshold is well below the levels at which irritation is observed.

Repeat dose toxicity: An in vivo toxicokinetics study confirmed the rapid metabolism of n-butyl acetate (BAc) to BA. Hydrolysis of BAc in blood and brain was estimated to be 99 percent complete within

2.7 minutes (elimination t1/2 = 0.41 minute). Thus, organisms exposed to BAc can experience appreciable tissue concentrations of BA. In this way, the results of toxicity studies with BAc can be used as supplemental, surrogate

data to provide information on the toxicity of BA.

A thirteen-week, subchronic exposure to BAc, the metabolic precursor of BA, produced transient hypoactivity (during exposure only) at 1500 and 3000 ppm (7185 and 14370 mg/m3) along with decreased body weight and food consumption, but no post exposure neurotoxicity even at 3000 ppm. A concurrent subchronic neurotoxicity study under the same exposure conditions showed no evidence of cumulative neurotoxicity based upon functional observational battery endpoints, quantitative motor activity, neuropathology and scheduled-controlled operant behavior endpoints. A no observable effect level (NOAEL) of 500 ppm (2395 mg/m3) was reported for systemic effects in rats, and a NOAEL of 3000 ppm (14370 mg/m3) was reported for post exposure neurotoxicity in rats.

Reproductive toxicity: Several studies indicate that BA is not a reproductive toxicant.

Female rats exposed to 6000 ppm (18000 mg/m3) BA throughout gestation and male rats exposed to 6000 ppm (18000 mg/m3) BA for six weeks prior to mating showed no effects on fertility or pregnancy rate. Male rats given BA at 533 mg/kg/day for 5 days had no testicular toxicity.

Developmental toxicity: BA produced only mild foetotoxicity and developmental alterations at or near the maternally toxic (even lethal) dose of 8000 ppm (24000 mg/m3) throughout gestation.

Genotoxicity: An entire battery of negative in vitro tests and a negative in vivo micronucleus test indicate that BA is not genotoxic.

Carcinogenicity: Based upon the battery of negative mutagenicity and clastogenicity findings, BA presents a very small potential for carcinogenicity.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds.

TRIETHYLENETETRAMINE

Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines.

In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely,

Version No: **1.1** Page **15** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

given the severity of response, but repeated exposures may produce severe ulceration.

For alkyl polyamines:
The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically

these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232

Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been

Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity.

Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules.

Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Triethylenetetramine (TETA) is a severe irritant to skin and eyes and induces skin sensitisation.

TETA is of moderate acute toxicity: LD50(oral, rat) > 2000 mg/kg bw, LD50(dermal, rabbit) = 550 - 805 mg/kg bw. Acute exposure to saturated vapour via inhalation was tolerated without impairment. Exposure to to aerosol leads to reversible irritations of the mucous membranes in the respiratory tract. Following repeated oral dosing via drinking water only in mice but not in rats at concentration of 3000 ppm there were signs of impairment. The NOAEL is 600 ppm [92 mg/kg bw (oral, 90 days)]. Lifelong dermal application to mice (1.2 mg/mouse) did not result in tumour formation.

There are differing results of the genetic toxicity for TETA. The positive results of the in vitro tests may be the result of a direct genetic action as well as a result of an interference with essential metal ions. Due to this uncertainty of the in vitro tests, the genetic toxicity of TETA has to be assessed on the basis of in vivo tests.

The in vivo micronucleus tests (i.p. and oral) and the SLRL test showed negative results.

There are no human data on reproductive toxicity (fertility assessment). The analogue diethylenetriamine had no effects on reproduction. TETA shows developmental toxicity in animal studies if the chelating property of the substance is effective. The NOEL is 830 mg/kg bw (oral).

Experience with female patients suffering from Wilson's disease demonstrated that no miscarriages and no foetal abnormalities occur during treatment with TETA..

In rats, there are several studies concerning developmental toxicity. The oral treatment of rats with 75, 375 and 750 mg/kg resulted in no effects on dams and fetuses, except slight increased fetal body weight. After oral treatment of rats with 830 or 1670 mg/kg bw only in the highest dose group increased foetal abnormalities in 27/44 fetus (69,2 %) were recorded, when simultaneously the copper content of the feed was reduced. Copper supplementation in the feed reduced significant the fetal abnormalities of the highest dose group to 3/51 (6,5 % foetus. These findings suggest that the developmental toxicity is produced as a secondary consequence of the chelating properties of TETA.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	*
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Leaend:

X - Data available but does not fill the criteria for classification

Data required to make classification available

Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

12.1. Toxicity

Ingredient	Endpoint	Test Duration	Species	Value	Source
methyl ethyl ketone	LC50	96	Not Applicable	228.1300mg/L	Not Applicable
methyl ethyl ketone	EC50	48	Not Applicable	3080mg/L	Not Applicable
methyl ethyl ketone	EC50	96	Not Applicable	>5000mg/L	Not Applicable
methyl ethyl ketone	EC0	24	Not Applicable	2600mg/L	Not Applicable
methyl ethyl ketone	EC3	168	Not Applicable	>=12000mg/L	Not Applicable
C18 fatty acid dimers/ polyethylenepolyamine polyamides	LC50	96	Not Applicable	7.070mg/L	Not Applicable
C18 fatty acid dimers/ polyethylenepolyamine polyamides	EC50	48	Not Applicable	5.180mg/L	Not Applicable
C18 fatty acid dimers/ polyethylenepolyamine polyamides	EC50	72	Not Applicable	4.110mg/L	Not Applicable
isopropanol	LC50	96	Not Applicable	183.8440mg/L	Not Applicable
isopropanol	EC50	48	Not Applicable	125000mg/L	Not Applicable
isopropanol	EC50	96	Not Applicable	993.2320mg/L	Not Applicable
isopropanol	EC0	24	Not Applicable	>=10000mg/L	Not Applicable
isopropanol	EC10	24	Not Applicable	680mg/L	Not Applicable

Version No: **1.1** Page **16** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

isopropanol	EC100	24	Not Applicable	>100000mg/L	Not Applicable

isopropanol	EC29	504	Not Applicable	100mg/L	Not Applicable
isopropanol	EC90	96	Not Applicable	>10000mg/L	Not Applicable
n-butanol	LC50	96	Not Applicable	88.4620mg/L	Not Applicable
n-butanol	EC50	48	Not Applicable	>5000mg/L	Not Applicable
n-butanol	EC50	96	Not Applicable	2250mg/L	Not Applicable
n-butanol	BCF	24	Not Applicable	9210mg/L	Not Applicable
n-butanol	EC0	24	Not Applicable	300mg/L	Not Applicable
n-butanol	EC10	72	Not Applicable	135mg/L	Not Applicable
n-butanol	EC100	24	Not Applicable	500mg/L	Not Applicable
n-butanol	EC3	192	Not Applicable	>=1000mg/L	Not Applicable
n-butanol	EC90	96	Not Applicable	>5000mg/L	Not Applicable
triethylenetetramine	LC50	96	Not Applicable	180mg/L	Not Applicable
triethylenetetramine	EC50	48	Not Applicable	31.1mg/L	Not Applicable
triethylenetetramine	EC50	72	Not Applicable	2.5mg/L	Not Applicable
triethylenetetramine	EC100	120	Not Applicable	>=146mg/L	Not Applicable
triethylenetetramine	EC100	48	Not Applicable	56mg/L	Not Applicable
triethylenetetramine	EC0	48	Not Applicable	18mg/L	Not Applicable
triethylenetetramine	EC10	72	Not Applicable	0.67mg/L	Not Applicable

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For methyl ethyl ketone: log Kow: 0.26-0.69 log Koc: 0.69 Koc: 34 Half-life (hr) air: 2.3

Half-life (hr) H2O surface water : 72-288

Henry's atm m3 /mol: 1.05E-05 BOD 5 : 1.5-2.24, 46% COD : 2.2-2.31, 100% ThOD : 2.44

BCF:1

Environmental fate:

TERRESTRIAL FATE: Measured Koc values of 29 and 34 were obtained for methyl ethyl ketone in silt loams. Methyl ethyl ketone is expected to have very high mobility in soil. Volatilisation of methyl ethyl ketone from dry soil surfaces is expected based upon an experimental vapor pressure of 91 mm Hg at 25 deg C. Volatilization from moist soil surfaces is also expected given the measured Henry's Law constant of 4.7x10-5 atm-cu m/mole. The volatilisation half-life of methyl ethyl ketone from silt and sandy loams was measured as 4.9 days. Methyl ethyl ketone is expected to biodegrade under both aerobic and anaerobic conditions as indicated by numerous screening tests.

AQUATIC FATE: Based on Koc values, methyl ethyl ketone is not expected to adsorb to suspended solids and sediment in water. Methyl ethyl ketone is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated half-lives for a model river and model lake are 19 and 197, hours respectively. Biodegradation of this compound is expected based upon numerous screening tests. An estimated BCF value of 1 based on an experimental log Kow of 0.29, suggests that bioconcentration in aquatic organisms is low.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, methyl ethyl ketone, which has an experimental vapor pressure of 91 mm Hg at 25 deg C, will exist solely as a vapor in the ambient atmosphere. Vapour-phase methyl ethyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 14 days. Methyl ethyl ketone is also expected to undergo photodecomposition in the atmosphere by natural sunlight. Photochemical degradation of methyl ethyl ketone by natural sunlight is expected to occur at approximately 1/5 the rate of degradation by photochemically produced hydroxyl radicals.

Ecotoxicity:

Fish LC50 (24 h): bluegill sunfish (Lepomis macrochirus) 1690-5640 mg/l; guppy (Lebistes reticulatus) 5700 mg/l; goldfish (Carassius auratus) >5000 mg/l

Fish LC50 (96 h): fathead minnow (Pimephales promelas) 3200 mg/l; bluegill sunfish (Lepomis macrochirus) 4467 mg/l; mosquito fish (Gambusia affinis) 5600 mg/l

Daphnia magna LC50 (48 h):<520-1382 mg/l Daphnia magna LC50 (24 h): 8890 mg/l

Brine shrimp (Artemia salina) LC50 (24 h): 1950 mg/l

For ketones:

Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds

Hydrolysis may also involve the addition of water to ketones to yield ketals under mild acid conditions. However, this addition of water is thermodynamically favorable only for low molecular weight ketones. This addition is an equilibrium reaction that is reversible upon a change of water concentration and the reaction ultimately leads to no permanent change in the structure of the ketone substrateThe higher molecular weight ketones do no form stable ketals. Therefore, the ketones are stable to water under ambient environmental conditions

Another possible reaction of ketones in water involves the enolic hydrogen on the carbons bonded to the carbonyl function. Under conditions of high pH (pH greater than 10), the enolic proton is abstracted by base (OH-) forming a carbanion intermediate that may react with other organic substrates (e.g., ketones, esters, aldehydes) containing a center for nucleophilic attack. The reactions, commonly recognized as condensation reactions, produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavorable.

Based on its reactions in air, it seems likely that ketones undergo photolysis in water. It is probable that ketones will be biodegraded to an appreciable degree by micro-organisms in soil and water. They are unlikely to bioconcentrate or biomagnify.

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methyl ethyl ketone	LOW (Half-life = 14 days)	LOW (Half-life = 26.75 days)
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
n-butanol	LOW (Half-life = 54 days)	LOW (Half-life = 3.65 days)
triethylenetetramine	LOW	LOW

12.3. Bioaccumulative potential

Version No: **1.1** Page **17** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

Ingredient	Bioaccumulation
methyl ethyl ketone	LOW (LogKOW = 0.29)
isopropanol	LOW (LogKOW = 0.05)
n-butanol	LOW (BCF = 64)
triethylenetetramine	LOW (LogKOW = -2.6464)

12.4. Mobility in soil

Ingredient	Mobility
methyl ethyl ketone	MEDIUM (KOC = 3.827)
isopropanol	HIGH (KOC = 1.06)
n-butanol	MEDIUM (KOC = 2.443)
triethylenetetramine	LOW (KOC = 309.9)

12.5.Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Available	Not Available	Not Available
PBT Criteria fulfilled?	Not Available	Not Available	Not Available

12.6. Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

Product / Packaging

disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ► In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility
 can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste treatment options

Not Available

Sewage disposal options Not Available

SECTION 14 TRANSPORT INFORMATION

Labels Required

Limited Quantity: 843ER-800ML, 843ER-3.25L kits

Issue Date: 23/10/2015 Version No: 1.1 Page 18 of 21

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015 COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining) (vapour pressure at 50 °C more than 110 kPa); COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining) (vapour pressure at 50 °C not more than 110 kPa)

14.5. Transport hazard class(es)

14.4.Environmental hazard

14.3.UN proper shipping

14.1.UN number

14.2.Packing group

1139

Class 3 Subrisk Not Applicable

No relevant data

14.6. Special precautions for

Hazard identification (Kemler)	33
Classification code	F1
Hazard Label	3
Special provisions	640C; 640D
Limited quantity	5 L

Air transport (ICAO-IATA / DGR)

Air transport (ICAO-IAIA / D	iGR)				
14.1. UN number	1139				
14.2. Packing group	II				
14.3. UN proper shipping name	Coating solution (includes surface treatments or coatings used for industrial or other purposes such as vehicle undercoating, drum or barrel lining)				
14.4. Environmental hazard	No relevant data				
14.5. Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L				
14.6. Special precautions for user	Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions	A3 364 60 L 353 5 L Y341 1 L			

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1139
14.2. Packing group	
14.3. UN proper shipping name	COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under-coating, drum or barrel lining)
14.4. Environmental hazard	Marine Pollutant
14.5. Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
14.6. Special precautions for user	EMS Number F-E , S-E Special provisions Not Applicable Limited Quantities 5 L

Inland waterways transport (ADN)

14.1. UN number	1139
14.2. Packing group	П
14.3. UN proper shipping name	COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining) (vapour pressure at 50 °C more than 110 kPa); COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining) (vapour pressure at 50 °C not more than 110 kPa)
14.4. Environmental hazard	No relevant data
14.5. Transport hazard class(es)	3 Not Applicable

Version No: **1.1** Page **19** of **21** Issue Date: **23/10/2015**

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

14.6. Special precautions for user

Classification code	F1
Special provisions	640C 640D
Limited quantity	5 L
Equipment required	PP, EX, A
Fire cones number	1

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	methyl ethyl ketone	z
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	triethylenetetramine	Υ

SECTION 15 REGULATORY INFORMATION

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

METHYL ETHYL KETONE(78-93-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Bulgarian)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Czech)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Danish)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Dutch)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(English)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Estonian)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Finnish)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(French)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Greek)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Hungarian)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Italian)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Latvian)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Lithuanian)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Maltese)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Polish)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Portuguese)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs)

(Romanian)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovak)

(Slovak)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovenian)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Spanish)

European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Swedish)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

UK Workplace Exposure Limits (WELs)

C18 FATTY ACID DIMERS/ POLYETHYLENEPOLYAMINE POLYAMIDES(68410-23-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

(German)

ISOPROPANOL(67-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

UK Workplace Exposure Limits (WELs)

N-BUTANOL(71-36-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

UK Workplace Exposure Limits (WELs)

TRIETHYLENETETRAMINE(112-24-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

European Customs Inventory of Chemical Substances ECICS (English)

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

 Version No: 1.1
 Page 20 of 21
 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

H225, H319, H371, H312, H302, H341, H361,

H314

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : 67/548/EEC, 1999/45/EC, 98/24/EC, 92/85/EC, 94/33/EC, 91/689/EEC, 1999/13/EC, Commission Regulation (EU) 2015/830, Regulation (EC) No 1272/2008 and their amendments as well as the following British legislation: - The Control of Substances Hazardous to Health Regulations (COSHH) 2002 - COSHH Essentials - The Management of Health and Safety at Work Regulations 1999

15.2. Chemical safety assessment

For further information please look at the Chemical Safety Assessment and Exposure Scenarios prepared by your Supply Chain if available.

Index No

ECHA SUMMARY

Ingredient

2

9. •	0,10,110,110,01			
methyl ethyl ketone	78-93-3	606-002-00-3	01-2119457290-43-XXXX, 01-2119943742-35-XXXX	
Harmonisation (C&L Inventory)	Hazard Class and Category	Code(s)	Pictograms Signal Word Code(s)	Hazard Statement Code(s)
1	Flam. Liq. 2, Eye Irrit. 2, STOT	SE 3	GHS07, GHS02, Dgr	H225, H319, H336

FCHA Dossier

Dgr, Wng, GHS01, GHS08

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

Flam. Liq. 2, Eye Irrit. 2, STOT SE 3, Skin Irrit. 2, Eye Irrit.

CAS number

2A

Ingredient	CAS number	Index No	ECHA Dossier
C18 fatty acid dimers/ polyethylenepolyamine polyamides	68410-23-1	Not Available	Not Available

Harmonisation (C&L Inventory)	Hazard Class and Category Code(s)	Pictograms Signal Word Code(s)	Hazard Statement Code(s)
1	Skin Irrit. 2, Eye Irrit. 2	GHS07, Wng	H315, H319
2	Eye Dam. 1, Skin Sens. 1, Skin Corr. 1C, Aquatic Chronic 1, Aquatic Acute 1, Skin Sens. 1A	Wng, GHS05, Dgr, GHS09, GHS06	H318, H317, H314, H410, H335, H400

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

Ingredient	CAS number	Index No	ECHA Dossier
isopropanol	67-63-0	603-117-00-0	01-2119457558-25-XXXX

Harmonisation (C&L Inventory)	Hazard Class and Category Code(s)	Pictograms Signal Word Code(s)	Hazard Statement Code(s)
1	Flam. Liq. 2, Eye Irrit. 2, STOT SE 3	GHS07, GHS02, Dgr	H225, H319, H336
2	Flam. Liq. 2, Eye Irrit. 2, STOT SE 1, Eye Irrit. 2A, Repr. 2, STOT RE 2	GHS02, Dgr, GHS08, GHS03	H225, H319, H370, H312, H340, H302, H361, H373

Harmonisation Code 1 = The most prevalent classification. Harmonisation Code 2 = The most severe classification.

Ingredient	CAS number	Index No	ECHA Dossier
n-butanol	71-36-3	603-004-00-6	01-2119484630-38-XXXX

Harmonisation (C&L Inventory)	Hazard Class and Category Code(s)	Pictograms Signal Word Code(s)	Hazard Statement Code(s)
1	Flam. Liq. 3, Acute Tox. 4, Skin Irrit. 2, Eye Dam. 1, STOT SE 3	GHS02, GHS05, Dgr	H226, H302, H315, H318, H335, H336
2	Flam. Liq. 3, Acute Tox. 4, Skin Irrit. 2, Eye Dam. 1, STOT SE 3, Acute Tox. 3, Asp. Tox. 1, STOT RE 1	GHS02, GHS05, Dgr, GHS08, GHS06	H315, H318, H370, H301, H332, H225, H304, H372

 $Harmonisation\ Code\ 1 = The\ most\ prevalent\ classification.\ Harmonisation\ Code\ 2 = The\ most\ severe\ classification.$

Ingredient	CAS number	Index No	ECHA Dossier
triethylenetetramine	112-24-3	612-059-00-5	Not Available

Harmonisation (C&L Inventory)	Hazard Class and Category Code(s)	Pictograms Signal Word Code(s)	Hazard Statement Code(s)
1	Acute Tox. 4, Skin Corr. 1B, Skin Sens. 1, Aquatic Chronic 3	GHS05, Dgr	H312, H314, H317, H412
2	Acute Tox. 4, Skin Corr. 1B, Skin Sens. 1, Aquatic Chronic 3, Eye Dam. 1, Acute Tox. 3, Resp. Sens. 1	GHS05, Dgr, GHS06, GHS08	H314, H317, H412, H302, H318, H311, H334

 $Harmonisation \ \ Code\ 1 = The\ most\ prevalent\ classification.\ Harmonisation\ \ Code\ 2 = The\ most\ severe\ classification.$

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Y
Canada - NDSL	N (n-butanol; C18 fatty acid dimers/ polyethylenepolyamine polyamides; isopropanol; triethylenetetramine; methyl ethyl ketone)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	N (C18 fatty acid dimers/ polyethylenepolyamine polyamides)
Japan - ENCS	N (C18 fatty acid dimers/ polyethylenepolyamine polyamides)
Korea - KECI	Υ
New Zealand - NZIoC	Y

 Version No: 1.1
 Page 21 of 21
 Issue Date: 23/10/2015

843ER-Part B Silver Coated Copper Epoxy Conductive Coating

Print Date: 23/10/2015

Philippines - PICCS	Y
USA - TSCA	Y
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Full text Risk and Hazard codes

H226	Flammable liquid and vapour
H301	Toxic if swallowed
H302	Harmful if swallowed
H304	May be fatal if swallowed and enters airways
H311	Toxic in contact with skin
H312	Harmful in contact with skin
H314	Causes severe skin burns and eye damage
H319	Causes serious eye irritation
H332	Harmful if inhaled
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled
H335	May cause respiratory irritation
H340	May cause genetic defects
H341	Suspected of causing genetic defects
H361	Suspected of damaging fertility or the unborn child
H370	Causes damage to organs
H371	May cause damage to organs
H372	Causes damage to organs through prolonged or repeated exposure
H373	May cause damage to organs through prolonged or repeated exposure
H400	Very toxic to aquatic life
H410	Very toxic to aquatic life with long lasting effects
H412	Harmful to aquatic life with long lasting effects

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

 ${\sf PC-TWA} : {\sf Permissible\ Concentration-Time\ Weighted\ Average}$

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index